Digital Preservation Summary

Jeff Rothenberg

Jeff_Rothenberg@acm.org (310/664-1967)

April 4, 2003

Jeff Rothenberg ICA'03 Rev: 2003-03-20

Digital records are very vulnerable to loss

- Media decay or "evaporation" of bits
 - Due to physical, chemical, magnetic effects, etc.
- Media obsolescence
 - Physical and logical format incompatibilities
 - Unavailability of suitable "drives" or "controllers"
- Dependence on incompatible or obsolete software
 - e.g., for word processing or hypermedia documents, DBs, etc.
- Dependence on obsolete software environments
 - Unavailability of OS, I/O drivers, etc. for required software
- Dependence on obsolete hardware
 - Unavailability of hardware required to run required software

So how long will digital records last?

- Forever?
 - Because they can be copied perfectly (i.e., proliferate without degrading)?
- No!
 - Because of the vulnerabilities discussed above, the best we can say is...
- "Digital records last forever or five years, whichever comes first"

Solving the media problem is "straightforward"

- Truly "archival" digital storage media are not yet cost-effective
 - Since media (and their formats & reading devices) become obsolete so fast
 - And storage capacity, density, & speed increase with each new generation
 - The market will not pay for long-lived media while this progression continues
- So, must copy records to new media while still readable
 - The same as for non-digital records
 - However, must take into account obsolescence as well as physical lifetime

But all digital records are software-dependent

- Digital records can be seen only by running a program
 - They are stored in encoded form, understood only by a program
 - They cannot be accessed, read, or printed without that program
 - They must be interpreted to be made intelligible to a human
 - They are essentially programs
 - Examples: ASCII character stream, hypermedia, database, animated film, interactive video game
- The data file for a software-dependent record is not enough
 - The file can be properly interpreted only by its software
 - Without the software, the record is unusable (may not even really exist)
 - "Virtual records" may consist of multiple (distributed) files
- Software-dependent records are really system-dependent
 - They require a software environment (OS, drivers, etc.)
 - Which in turn requires a hardware environment (CPU, I/O devices, etc.)

Bits in a bit stream can represent anything

Furthermore, many new records are inherently digital

- Inherently digital records are those whose meaning or usability arise from and rely on their being encoded in digital form
- They cannot be meaningfully represented as page images
 - Doing so loses essential aspects of their contents and/or behavior
- Examples include dynamic, active or interactive artifacts
 - Multimedia (e.g., web pages, CD-ROM publications, Ph.D. dissertations)
 - Generated dynamically (e.g., calendars, agendas, bookkeeping data)
 - Generated on request (e.g., customized weather maps)
 - Generated automatically (e.g., JavaScript, cgi, ASP web pages, servelets)
 - Active presentation (e.g., animation, simulation, virtual reality)
 - Databases (where transactions update relationships and inferences)
 - Interactive (e.g., applets, interactive virtual reality)

A particular "view" of information may be crucial

Example: Space Shuttle O-ring damage vs. temperature Prior to the Challenger disaster

Levels of O-ring damage

3	1																
2												1					
1		1	1	1					2								
0					1	3	1	1	2	1	1	1	2	1	1	1	1
	53	57	58	63	66	67	68	69	70	72	73	75	76	78	79	80	81

Temperature °F

Revealing view of Space Shuttle O-ring Data

Extrapolation of damage curve to the 31° F temperature forecast for Challenger's launch on January 28, 1986.

Every digital record is really a program

A program

- Is a sequence of commands in some formal language
- That is intended to be interpreted
- By an interpreter that understands that language

An interpreter

- Is an active process
- That knows how to perform commands
- Specified in a given formal language

Interpretation ultimately involves hardware

- ASCII codes are rendered by a printer or display
- More complex entities are interpreted by software (applications)
- But all S/W is ultimately interpreted by hardware

What you see may *not* be what you get


```
V2.24 ERwin
if
 %JoinPKPK(oldrows,newrows," <> "," or ")
then
 select count(*) into numrows
  from %Child
  where
   %JoinFKPK(%Child,oldrows," = "," and");
 if (numrows > 0)
 then
  signal parent updrstrct err
 end if;
end if;
if
 %JoinPKPK(oldrows,newrows," <> "," or ")
then
 update %Child
  set
    %JoinFKPK(%Child,newrows," = ",",")
  where
   %JoinFKPK(%Child,oldrows," = "," and");
end if;
```

Saving the bits is necessary but not sufficient

- Saving the bit stream of a record without saving its interpreter
 - Is like saving hieroglyphics without saving a Rosetta Stone
- But worse, since an interpreter is not just another record
 - It is software
 - Which must be executed (i.e., interpreted)
 - And the record must still be understood (i.e., further "interpreted")
- So digital records are generally software-dependent
 - And software is ultimately hardware dependent

So why is it hard to preserve digital records?

- Can't "just save" digital records like physical records
 - The medium carries all attributes of a traditional record
- Digital records require an extra "interpretation" step
 - To be made human-readable
 - Especially if they are dynamic, responsive, interactive, or "active" (executable)
 - But even simple text formats require interpretation
- An interpreter can be hardware or software
 - But hardware is limited to interpreting simple, static languages
 - And must be well-specified in order to be built
 - Whereas software can interpret more complex, dynamic languages
 - And need not be well-specified to run
- So most digital records rely on software interpreters
 - E.g., application programs
 - Which become obsolete
- And executing software requires hardware
 - Which become obsolete

Overview of proposed approaches to preservation

Non-solutions

- Do nothing
- Digital archaeology

Partial solutions

- Save page-images of artifacts
- Extract and save "core contents" of artifacts
- Translate artifacts into standard or "canonical" forms (without migration)
- Rely on "viewer" programs to render obsolete formats in the future
- Save metadata to help interpret saved bit streams ("assisted archaeology")
- Save source-code of rendering software (for future reverse-engineering)

Potentially complete solutions

- Formalization (replace artifacts by formal descriptions of themselves)
- Migration (repeatedly convert artifacts into new formats)
- Emulation (run original rendering software on virtually recreated hardware)

Standards are not enough

- Ultimate standards are not realistic in the foreseeable future
 - Information science is still inventing itself
 - Even the categories of kinds of information processing are not yet clear
 - So ultimate standardization is premature
- Using successive, evolving standards would require translation
 - But translation between standards is rarely reversible without loss
 - So this cannot reconstruct an original artifact
 - Translation forward across "paradigm shifts" may be impossible
 - So old artifacts may eventually be abandoned or corrupted
- Evolving standards will always lag behind state-of-the-art use
 - Until information science stops evolving
 - So state-of-the-art artifacts are likely to be "orphaned"
- Can't force users to conform to constraining standards
 - This asks them to forego the use of new capabilities
 - Which are the motivation for using information technology in the first place

Jeff RothenbergICA'03Chart jgr-10Rev: 2003-03-20

Formalization is very difficult

- A formal description of a saved digital artifact's logical format
 - Would allow properly interpreting that format in the future
 - So long as the formal description itself remained understandable
 - This would allow properly rendering the saved digital artifact
 - Without running its original software

- Unfortunately computer science cannot do this very well yet
 - Even for well-documented, well-defined formats
 - Let alone for arbitrary, new, proprietary formats

- The only complete description of a format is its interpreter
 - i.e., the software that knows how to render it

Emulation is the only proposed approach that...

- Can potentially preserve "digital-originals"
- Can preserve executable digital artifacts (i.e., "behavioral preservation")
- Can preserve all kinds of digital artifacts in a single, consistent way
- Obviates the need to understand the formats of individual records
 - Except what software is needed to view them
- Requires zero per-record (artifact) effort, both initially and over time
 - Except for copying bitstreams onto new storage media
- Defers the need to convert records into new formats unless and until it is desired to access them in such formats in the future

Jeff Rothenberg ICA'03 Chart jgr-1 Rev: 2003-03-20

EDSAC: the first electronic digital computer

Process models of preservation approaches

Jeff Rothenberg ICA'03 Chart jgr-12 Rev: 2003-03-20

Mixed preservation strategies

- Traditional conservation is both medium-specific & discipline-specific
 - Treat books differently from paintings, sculpture, textiles, furniture, audio tape, etc.
 - Libraries, archives, museums, scientific repositories, etc. have different agendas
- But the homogeneity of all digital artifacts creates new possibilities
 - All digital artifacts can be treated by any of the approaches we have discussed
 - And these approaches are not mutually exclusive
- Using one approach for everything would be simpler
 - May be unwarranted or too expensive for some kinds of records
 - But it would take advantage of economy of scale, so might ultimately be cheaper
 - Using one cheap approach would be better than using many expensive ones!
- For now, consider using multiple approaches in parallel:
 - Digital archaeology (for records that are unlikely to be accessed)
 - Page-image techniques (for simple records)
 - Formal methods (when applicable and affordable)
 - Standards (when available)
 - Migration (when it needs to be done anyway, i.e., for active records; or as a stopgap)
 - Emulation (if original behavior is needed; or as a cheap backup, to preserve everything)